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We review some of the issues facing semiclassical methods in classically chaotic 
systems, then demonstrate the long-time accuracy of semiclassical propagation 
of a nonstationary wave packet using the quantum baker's map of Balazs and 
Voros. We show why some of the standard arguments against the efficacy of 
semiclassical dynamics for long-time chaotic motion are incorrect. 
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1. INTRODUCTION 

Semiclassical mechanics has suffered from some tenacious theoretical and 
practical problems ever since its debut in the form of the "old quantum 
theory." The key complication behind many of the most intriguing theoreti- 
cal quandaries is the presence of chaotic dynamics. Until very recently, 
there has been good reason to be guardedly pessimistic in some ways about 
the eventual payoff of exploring the semiclassical mechanics of chaos. But 
now the field appears to be undergoing a renaissance. In the past few years, 
theories of eigenvalue spectra based on periodic orbits, such as curvature 
expansions ~1) and Riemann-Siegel lookalike formulas, t2) have been 
producing some very encouraging results. Our work in the time domain 
has also been fruitful; results for the stadium billiard (3) and earlier results 
on the baker's map (4) have been producing some unexpected but pleasant 
surprises. 

The study of the quantum mechanics of classically chaotic systems is 
known as quantum chaology. Most of the work in this field has taken place 
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in the energy domain, a Fourier transform (by stationary phase) away 
from the time domain. Our own recent contributions have shown that 
semiclassical techniques can be perhaps more readily extended to chaotic 
dynamics by shifting the perspective from the energy domain to the time 
domain. In this way, considerable progress has been made in understanding 
not only the dynamics, but also (by explicit Fourier transform) the energy 
spectrum 16) and the stationary states (7) of chaotic Hamiltonians. We have 
found some remarkably accurate comparisons to exact quantum dynamics, 
even for chaotic systems. (3 5) In this contribution, we describe the general 
setting behind these emerging semiclassical techniques and present some 
new results concerning the time scale of the validity, of the semiclassical 
approximation. 

1.1. Chaos and Semiclassical Dynamics 

The earliest form of semiclassical mechanics, the old quantum theory, 
was concerned only with integrable motion. In the work generally credited 
with being the first enunciation of the correspondence principle, ~8) Bohr 
extended the old quantum theory to the calculation of the intensities of 
spectral lines, in addition to the spectral frequencies. He was able to do so 
only when the classical motion was regular. In 1917, Einstein remarked 
that nonintegrable motion exists and is not treated by the standard 
quantization schemesJ zg) 

In the years immediately following the discovery of quantum 
mechanics, little effort was expended in trying to understand the 
asymptotic h --, 0 properties of classically chaotic systems. In fact, the basic 
issues went largely unrecognized for the next 40 years. It was commonly 
thought that chaos was an issue to be faced only in the context of "large" 
many-body systems. The recent resurgence of interest in classical mechanics 
has brought to the fore systems with as few as two degrees of freedom 
characterized by an intricate intermixing of chaos and regular motion 
which continues down to an arbitrarily fine scale. It has become imperative 
to discover the quantum implications of such classically chaotic motion, 
since it is so ubiquitous. 

1.1.1. Periodic Orbit Spectral Theories. Before the subject 
really became popular, Martin Gutzwiller gave a major impetus to quan- 
tum chaology with his pioneering work on developing a semiclassical 
theory of the energy spectrum which could in principle be applied equally 
well to both regular and chaotic motions. His efforts culminated in the 
Gutzwiller trace formula, ~1~ which relates oscillations in the quantum 
density of states to properties of the classical periodic orbits. 
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He began by examining the time-dependent Green's function 

G(q, q'; t )=  (ql exp(-i~t/h)Iq')  (1.1) 

As early as 1928, Van Vleck had described a short-time semiclassical 
approximation to this propagator which could be used with a generic 
Hamiltonian. (H) His formula took the form 

G(q, q'; t) -~ Det ( 02S 1/2 
\2rcih ~'-qq ~ )  exp (th --S ) (1.2, 

where the action S(q, q'; t) is Hamilton's principal function. To calculate 
S(q, q'; t), the classical trajectory needs to be found which leads from q' to 
q in time t. The action is then given by S = ~ dt ~ ,  the time integral of the 
Lagrangian ~o along the trajectory. This formula is directly applicable, 
however, only for the time regime where merely a single trajectory can be 
found meeting the specified boundary conditions. With chaotic dynamics, 
this regime is typically extremely short-lived. In extending this work to 
longer times by including the possibility of multiple classical paths, 

'" ( ~2S~ ,~ l /2expl i(@+~j)l  (1.3) 
G(q, q ,  t) "-- ~ Det \2rcih 8q 8q ] 

Gutzwiller found it necessary to augment the actions for the various paths 
with phase shifts ~bj, and showed how the q~/could be calculated. (6) These 
phase Shifts arise from the trajectories passing through focal points, where, 
as with the classical turning points, the simplest semiclassical prescription 
breaks down due to a rapidly changing de Broglie wavelength. (~2~ We call 
the resulting Green's function the "Van Vleck-Gutzwiller propagator." 

Once the semiclassical dynamics had been constructed, spectral 
information could be inferred with a time-energy Fourier transform. In 
particular, Gutzwiller studied the density of states g(E), 

(, 

g(E) = j dq G(q, q; E) 

G(q, q'; E) - f dt - 2nh G(q, q'; t) e iEt/~ 

(1.4) 

The density of states is such that g(E) dE gives the number of energy levels 
found between E and E + dE. The entire energy spectrum is represented by 
the exact density of states simply as g(E)= 52i 6 (E-Ei ) ,  a sum of Dirac 
delta functions, one centered at each of the energy eigenvalues Ei. By 
invoking the semiclassical approximation to the propagator G(q, q'; t) and 
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evaluating all integrals by the method of stationary phase, Gutzwiller 
developed a semiclassical formula for g(E). Periodic orbits entered the 
theory as being the stationary phase "points" for the integrand; the 
resulting integrals depend only on properties of these orbits. 

Gutzwiller's theory has seen many notable successes. For example, 
Berry and Tabor have since demonstrated that for regular dynamics, 
Gutzwiller's theory is equivalent to the WKB quantization rules. (13) The 
trace formula has also been successfully used to extract the lowest few 
energy levels of several strongly chaotic systems. ~ There are even several 
chaotic systems where periodic orbit spectral theories are known to be 
exact.(15) 

This is not to imply that the trace formula is without problems. One 
notorious difficulty is that without some way to damp out the contribu- 
tions from the longer period orbits, the sum over periodic orbits is, at best, 
conditionally convergent. Doubts have also been raised whether the trace 
formula is even capable in general of resolving individual energy levels very 
far above the ground state. ~16) Despite these worries, though, Gutzwiller's 
work constituted a significant advance for the understanding of the 
asymptotic h ---, 0 spectral properties of chaotic systems. 

1.1.2. Scars in the Eigenstates. The investigations of the eigen- 
states have, for the most part, been concerned more with developing 
an adequate understanding of the states' qualitative and statistical proper- 
ties than striving for a detailed description of individual states. (17 19) The 
early history of the field was dominated by the thought that the stationary 
quantum solutions would reflect, in good measure, the stationary classical 
solutions. (18) For classically ergodic motion, the expectation was that the 
eigenstates would be essentially featureless, random waves which, in some 
sense, uniformly accessed the classical energy shell. (19J 

Out of this arose a simple model, proposed by Berry, ~19) for describing 
the local statistical properties of the eigenstates. The requirement that the 
wavefunction had a well-defined energy was met by demanding that in the 
vicinity of a given point qo the wavefuncfion was comprised of a super- 
position of plane waves 

~(q) = ~ aj exp(ikj, q + iq~j) (1.5) 
J 

where the magnitude of every wavevector was fixed to the same value 
k =  Ikil determined by energy considerations, h2k2/2m = E-V(q0 ) .  Aside 
from this restriction, though, the wavefunction was taken to be as random 
as possible. The phases ~pj, orientations of the wavevectors kj, and 
amplitudes aj were all chosen randomly, and the sum was to be taken over 
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an effectively infinite number of such plane wave components. Stechel and 
Heller (2~ built upon this by developing the idea of "quantum ergodicity" in 
which not only were the individual eigenstates "random waves," but the set 
of eigenstates were statistically independent of one another. Quantum 
ergodicity describes the highest degree of randomness possible in a conser- 
vative quantum system, and as such represents a baseline against which 
one can judge the actual behavior of a system. 

It was later discovered, though, that such a degree of randomness is 
often incompatible with certain simple dynamical facts. (7) The original 
argument focused on the evolution of wavepackets [~(t)> = 
exp( - i J~ t /h )  [~(0)> which were initially well localized in both their 
coordinate and momentum extents. The central object of the discussion 
was the autocorrelation function (q  s(0)[ ~b(t)> which, in a sense, monitors 
the amplitude that the evolving state [~b(t)) returns to the region of phase 
space from which it was launched. The spectral intensities [(~b(0)[Ej>[2, 
which measure how well the eigenstates access the phase space region 
occupied by the initial wave packet, can be calculated in terms of the 
autocorrelation function as 

S(E)= ~ (~b(O) lq~(t)> e m'/h 

(1.6) 

=~ [(~b(O)]Ej)[2 6(E-Ej) 
J 

ergodicity indeed provides an adequate model for If quantum 
describing the system, the evolution of a wave packet obtains a sort of 
simplicity. The center of the wave packet moves away from its original 
value with an initial velocity ([J)/rn, causing the autocorrelation function 
to decay to zero. The packet rapidly spreads and subsequently begins a 
diffusive exploration of the energy shell. The diffusion is in fact so strong 
that the evolved wave packet never returns to the region of the initial state 
as a coherent entity. The behavior of the autocorrelation function, after the 
initial decay, is then governed by purely statistical considerations. 

The quantum ergodic description is demonstrably incorrect for wave 
packets launched in the vicinity of short-period periodic orbits, even with 
strongly chaotic dynamics. (7) The wave packet returns to its origin spread 
along the unstable manifold by an amount depending on the Lyapunov 
exponent of the periodic orbit, generating a recurrence in the autocorrela- 
tion function that can rise well above the statistical expectations. From 
this, one is able to infer that the stationary states would be subjected to an 
enhanced probability density all along a certain set of qualifying periodic 
orbits due to a coherent interference, and with an approximate wave 
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packet dynamics one can calculate the magnitude of the enhancement. The 
qualifying orbits are those with classical frequency co and Lyapunov expo- 
nent 2 such that o)/2 >~ 1. The resulting concentration of probability along 
certain periodic orbits were called "scars" of the periodic orbits, and the 
original work on the subject showed several prominent examples in the 
eigenstates of the stadium billiards. (7) Scars have since been studied in a 
variety of systems, (2a) where they often occur with such a frequency that at 
least as many states appear scarred as not. 

1.2. T ime Scales 

In many ways the fundamental semiclassical approximation is the Van 
Vleck-Gutzwiller time propagator, and the justification of the derivative 
theories (such as the energy-domain Green's function) lies in the fact that 
the semiclassical dynamics, up to a fixed time t, becomes increasingly more 
accurate as Planck's constant approaches a value of zero. The question of 
whether or not semiclassical theories are capable, in principle, of describing 
the spectrum and stationary states of chaotic systems ultimately rests on 
the determination of the time scale J s c  for which the semiclassical 
dynamics accurately reflects the quantum dynamics. 

A crucial time scale that arises in this connection is the so called break 
time 3-- B. The break time follows from uncertainty principle considerations, 
and is the minimum time required to be able to study features in the energy 
domain with a fine enough resolution to see individual energy levels. For  
a system with d degrees of freedom, the break time typically scales with 
Planck's constant as ~--B "~ 1/ha- 1. 

Semiclassical spectral theories are faced with the difficulty that while 
the semiclassical dynamics does become more accurate for a f ixed 
time t as h ~ 0, it is not at all clear that the accuracy continues out to 
the h-dependent break time, which rapidly grows to infinity with 
decreasing h. This conundrum severely complicates the analysis of the semi- 
classical limit. Little is actually known about the time scale J sc  over which 
the semiclassical dynamics breaksdown, or thus whether it is even capable 
of describing the quantum dynamics over the entire time range ~ .  Conse- 
quently, it is still an open question whether the spectra and stationary 
states of chaotic systems are within the grasp of semiclassical theories in the 
very limit h ~ 0 for which they are derived. 

In the literature, opinions expressed on these issues have ranged 
widely. At one extreme lies the optimistic claim that the Gutzwiller trace 
formula provides an exact description of the quantum spectrum in the 
h ~ 0  limit. (22) This hope has been bolstered, in part, by the aforemen- 
tioned successes of the trace formula. If true, it would seem to require that 
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the semictassical dynamics becomes ever more accurate throughout the 
entire pre-break-time regime and beyond as Planck's constant diminishes. 
At the other extreme lies the pessimistic estimation that the semiclassical 
dynamics remains accurate only over an exceedingly short time scale 
t * =  (9(ln(1/h)) known as the log time. (23) 

One way to envision the origin of a time logarithmic in h is to consider 
the autocorrelation function @(0)l@(t))  for a wave packet initially 
centered on an unstable periodic orbit situated in a chaotic sea. For the 
shortest, least unstable orbits, the early-time behavior of the autocorrelation 
function is to fall rapidly from unity to near zero as the wave packet moves 
along the periodic orbit and remain small save at the multiple periods of 
the orbit when the dynamics bring the evolving state back into the region 
of phase space from which it was launched. ~24~ Due to the stretching of the 
wave packet along the unstable manifold, the strength of each subsequent 
recurrence is smaller by a factor of e x p ( - 2 U 2 )  from the previous one, 
where 2 is the positive Lyapunov exponent characterizing the orbit and z 
is the period. Such motion can be understood by considering only the 
dynamics linearized about the periodic orbit. However, in a bounded 
system, the unstable manifold must at some point fold back upon itself and 
eventually lead to a further set of nonlinear recurrences. The onset of these 
"homoclinic" recurrences serves as a natural definition of the log time. The 
wave packet can be made to constrict onto the periodic orbit as h--* 0 in 
a uniform manner by letting the widths of the wave packet scale as h 1/2, 

P 

q > 

Fig. 1. A schematic representation of the homoclinic recurrences. The grey disk represents 
an initial swarm of trajectories whose evolved form is pictured in black; the propagation time 
just exceeds the log time. In this example, there are seven branches which contribute to the 
autocorrelation function. They proliferate exponentially. 
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causing the homoclinic recurrences to occur later and later. By coupling 
this with the exponential rate of spreading along the unstable manifold, one 
finds that the time scale for these recurrences does indeed scale as ln(h-l) .  

Near this time, the homoclinic oscillations generate a proliferation of 
caustics. ~25) Isolated caustics can easily be handled by uniformization 
techniques. However, by t* or soon thereafter these corrections to the 
primitive semiclassical wavefunction become ubiquitous on the scale of a 
typical wavelength. Even if one were to uniformize the caustics, the log 
time would still be important because at this time the classical chaos is 
generating structural complexities (e.g., caustics) on the scale of a single 
quantum cell and smaller. The semiclassical dynamics generates an enor- 
mous number of contributions to (~b(0)l~b(t)) from the various branches 
of the homoclinic oscillations cutting through the initial state; see Fig. 1. 

This evolving complexity can also be viewed from the standpoint of 
initial conditions. On the scale of a Planck cell, the different branches 
originate from imperceptible differences in initial conditions, thus con- 
tributing to the pessimism about the validity of semiclassical methods for 
such times in chaotic systems (however, see the Conclusion). 

2. L O N G - T I M E  D Y N A M I C S  

The difficulties in quantum chaology have forced a temporary retreat 
to simplified systems. These include billiards on surfaces of constant 
negative curvature, ~15) the Arnol'd cat map, ~15~ and a relative newcomer: 
the baker's map [26]. ~z6) For our purpose of investigating the time scale 
question, the baker's map is an ideal starting point. 

2.1. The Classical Baker's Transformat ion 

The intricate structures and infinite complexities characteristic of 
chaotic Hamiltonians arise from an interplay of three essential ingredients. 
The first, Liouville's theorem, is one of the general principles of dynamics. 
The evolution may cause a region in phase space to become drastically 
distorted; however, Liouville's theorem guarantees that the volume encom- 
passed by the region remains constant. The second is that the dynamics 
is locally unstable. Nearby trajectories separate exponentially fast, and a 
localized volume rapidly stretches into a thin, filamentary strand. The third 
is that the motion is bounded to a finite region in phase space, causing the 
filamentary volume to fold back upon itself, time and again, generating an 
ever more convoluted web. 

The baker's transformation ~27) is perhaps the simplest imaginable 
dynamical system that incorporates these three ingredients; it does so in a 
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very simple and visual manner. The phase space is restricted to a 
fundamental square 0 ~< q, p ~< 1 which, as illustrated in Fig. 2, is mapped 
onto itself in a two-part transformation. The square is initially distorted 
into a rectangle with the q side stretched to twice its original length and the 
p side halved. The rectangle is then cut in half along the short axis and the 
two halves are stacked, the right on top of the left, to reform the fundamen- 
tal domain. This transformation is codified with the mapping equations 

qi+ 1 = 2 q i -  [2qi ']  

Pi + [2qi] 
P i + l  = 2 

(2.1) 

where the brackets are used to indicate the integer part of the argument. 

2.1.1. Encoding the Dynamics. An attractive feature of this 
mapping is that the equations of motion can be exactly integrated and lead 
to a very simple relationship between the present and future positions of a 
trajectory. The integration is performed by a trivial construction which 
serves as a coding for the dynamics. Any given phase point (q, p) in the 
interior of the square can be fully specified by writing the coordinates as 
b i n a r y  decimals, q = .  a l  a2a3. . ,  and p = .  b I b2b  3 .... and combining them back 
to back as . . . b3b2b  1 . a l a 2 a  3 .... The position of the decimal point separates 
q from p. The effect of each iteration of the mapping is merely to shift the 

B 

P 

q 
Fig. 2. Pictorial representation of one iteration of the classical baker's map, which is 
represented by the letter B. The left half, marked (1), is transformed into the bottom half (b) 
by a compression in p and stretching in q. Similarly, the right half (r) goes into the top (t). 
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decimal point to the right by one digit. The coordinate and momentum 
(q,  Pt) of the trajectory after t mappings are then found by shifting the 
decimal point to the right by t digits. Reading to the right of the new 
decimal point gives qt, whereas reading to the left gives the momentum pt 
in a bit-reversed order. The entire history of the trajectory is thus laid out 
by the sequence of O's and l's in the coding ...b3b2blala2a3..., and the 
decimal point plays the role of discerning the present state. 

Despite the simplicity of this transformation, the dynamics it generates 
displays the most highly chaotic motion possible in a Hamiltonian system. 
While the equations of motion are deterministic, any uncertainty in initial 
conditions is rapidly magnified to such an extent that after relatively few 
iterations of the map the trajectory can be found, with equal probability, 
anywhere in the entire phase space. 

2.1.2. C o r r e l a t i o n  Funct ions .  The encoding of the dynamics 
gives us a powerful descriptive tool. Consider the periodic orbits. Any point 
on a periodic orbit is a fixed point of the map iterated one full period. All 
of the fixed points of a given period t are easily located since their codings 
must have the special form ...777.777... of a subcode 7, containing t bits, 
which is repeated ad infinitum. A simple example of a period-three fixed 
point is (1/7, 4/7). To identify the subcode of a period-t fixed point, one 
may start with the integer t /=  ( U - 1 ) q .  The subcode 7 is just the binary 
representation of t/ with enough zeros added to the left to create a t-bit 
binary. Because the momentum is found from the coding by reading from 
right to left, rather than left to right, it is often convenient to define 
whose binary representation is found by reversing the ordering of the bits 
in the binary representation of 7. There is a similar relationship as above 
between 7 and t/, existing between ~ and (2 t -  1) p of the fixed point. The 
set of period-t fixed points is exhausted by allowing the integer q to vary 
over the range 0 ~< t/~< 2 t - 1. 

As illustrated in Fig. 3, the effect of iterating the baker's transforma- 
tion t times can be given a simple, graphical interpretation. The phase 
space is thought of as being initially divided into 2 t identical vertical strips, 
each with a width 6q=2-q  The 7th strip spans the coordinate range 
76q< q< (7 + 1)6q. The choppings incurred by the t repetitions of the 
mapping all fall on the boundaries between strips. Each individual strip 
undergoes purely linear dynamics and after t iterations is transformed from 
a vertical to a horizontal strip which now stretches across the full breadth 
of the coordinate range and is compressed in momentum to a width 
61) = 2 -~. To complete the mapping, a rule is needed to specify how to 
stack these horizontal strips on top of one another to reform the phase 
space square. Clearly, if a period-t fixed point were to fall somewhere 
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q 
Illustration of the organization by the fixed points of the twice-iterated map. The ? 

for each fixed point and strip is indicated. 

within a given vertical strip, it would act as an anchoring point throughout 
the transformation, dictating exactly where the final horizontal strip is 
situated. The coding can be used to show that in every strip there must be 
one and only one fixed point, and the position of the fixed point in the 7th 
strip is easily located because the subcode for the fixed point is the same 
integer as the strip label 7. As any particular strip can be interpreted as 
being the linearizable domain of the guiding fixed point, there arises the 
rather special situation that all the map's nonlinearities, which arise from 
the chopping, and, in fact, the evolution of the entire phase space can be 
completely incorporated by considering only the periodic orbits and the 
linear dynamics in their vicinity. 

This organization leads to a very simple method for calculating the 
dynamical correlation function (p~pA(t)) between two phase space dis- 
tributions PA and Ps, where pA(t) is found by evolving the initial state PA 
for t time steps. In this expression the brackets ~ . . . )  indicate an integra- 
tion over the variables q, p. If the distribution PB is taken to be highly 
localized to a particular region of phase space, the correlation function 
~pBpA(t)) serves to monitor the amount of the state PA which is to be 
found in that region at time t. The method for calculating {PBpA(t)) is 
illustrated in Fig. 4 for an autocorrelation function p s =  pA(O), where the 
initial state is taken to be Gaussian-distributed in both coordinate and 
momentum. When considering the dynamics for a sufficiently long time t, 
the initial distribution PA will generally be found to be spread over several 
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Fig. 4. In calculating the classical correlation functions, the initial distribution, pictured at 
top, is separately evolved by the linear dynamics of each strip into the distributions shown in 
the lower picture. 

adjacent vertical strips. We will denote the contribution to (psp~( t ) }  from 
that part of PA which lies in the 7th strip as (pBpA(t)}~, and thus the 
entire correlation function will be given as 

(pBpA(t)} = ~ (pBpA(t))  7 (2.2) 
7 

A straightforward procedure for calculating (pspA(t))~ would be to 
concentrate solely on that part of PA which lies in the 7th strip, apply the 
appropriate linear transformation to the strip, and then overlap the resulting 
distribution with Ps. An equivalent, but physically more appealing 
prescription is to evolve the entire state PA by the linear dynamics of the 
vth fixed point, completely ignoring all choppings, and then overlap with 
PB- From this point of view, the sum over V is interpreted as being a sum 
over the fixed points. In this second method, every initial condition which 
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lies outside of the 7th strip ends up outside of the fundamental phase space 
square. However, these unphysical trajectories are of no consequence to 
(pBpA(t))~, as the probe distribution p~ vanishes in these regimes. 

2.2. The  Q u a n t u m  Baker 's  M a p  

In setting up the quantum description of the baler's transformation, we 
summarize the clear and intuitively appealing approach of Balazs and 
Voros. (26) It is convenient to work with a discretized coordinate space so 
that we need to specify the wavefunctions at only a finite number of lattice 
sites qj rather than over a continuous range of positions q. The dimension 
of the Hilbert space needed to span the range of possible quantum states 
is thus kept finite, simply being equal to the number of lattice sites; we will 
work only with lattices with the even number of sites 2N. From this restric- 
tion arises a natural definition of Planck's constant as (2rch)-I = 2N, since 
the 2N distinct quantum states are being supported, in a sense, by a 
classical phase space of unit area. 

The momentum space is similarly discretized. Unless otherwise 
mentioned, the exact quantum results will be calculated using Saraceno's 
convention (28) for the placement of the lattice sites for the two representa- 
tions: 

=pj ,  j = 0  ..... 2 N - 1  (2.3) qj=~-~ J + ~  

Balazs and Voros originally used a slightly different convention. However, 
Saraceno showed that their lattice broke the R symmetry of the classical 
map, resulting in their quantum baker's map not respecting R. Using the 
lattice given by Eq. (2.3), Saraceno was able to restore the R symmetry 
to the quantized system. Transformation from the coordinate to the 
momentum representation is accomplished by a discrete Fourier transform 
denoted a s  G2N; G2-N 1 then brings one back from p to q. The matrix 
elements of G2N a r e  the overlaps between eigenstates of p and those of q, 
and are given by 

(G2N)j l = (pj]q,) = (2~h) 1/2 exp( - ipjqjh) (2.4) 

While the lattice sites in Eq. (2.3) are restricted to lying within the 
fundamental domain, it is at times convenient to imagine the q (p) lattice 
as extending over the entire coordinate (momentum) axis. The wave- 
functions are then thought to be periodically repeated, though the advance- 
ment of the coordinate or momentum by one unit is accompanied by a 
phase shift--i.e., 0 (q+ l)=exp(i~bq) 0(q) and O(p+ 1)=exp(gbq)~b(p). 
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Saraceno's convention results in ~q ~---~ = ~p antiperiodic boundary condi- 
tions for both the coordinate and momentum directions. 

Rather than search for a generating function of the dynamics, Balazs 
and Voros chose to construct the evolution of a state by directly building 
a single time-step propagator/3 that was both the analogue of the classical 
evolution equations and manifestly unitary. They reasoned that the classi- 
cal blockwise mappings l ~ b and r ~ t pictured in Fig. 2 could be captured 
in the quantum mechanics by specifying the state in a coordinate represen- 
tation before the mapping, and in a momentum representation afterward. 
The l ~ b mapping was accomplished by Fourier analyzing the lower half 
(q < 1/2) of the initial state to discern its momentum distribution. This 
information was squeezed into the lower half (p < 1/2) of the final state, 
effectively halving all momenta. With similar considerations for the r ~ t 
mapping and a final Fourier transform to bring the entire state back into 
the coordinate representation, the full one-step propagator is given by 

/~ = G ~  GN 

For the rest of the work, we will drop the subscript denoting the dimension 
of the operators. Unless specified otherwise, all operators will act on the 
full, 2N-dimensional vector space. 

2.3. Nonlinear Wave Packet Dynamics 

A fundamental goal of quantum mechanics is the means to predict 
transition amplitudes. For general dynamical systems, crudely stated, the 
semiclassical approximation to these amplitudes amounts to finding the 
classical routes for the transition, and associating the square root of a 
classical probability and a phase with each one. If there is anything general 
to be learned from the baker's map, it is necessary that a similar interpreta- 
tion applies. The beautiful simplicity of the baker's map allows us to say, 
even before deriving it, what must be found. In order to incorporate the 
nonlinearities into the calculation of the quantum correlation function 
(~bA[ /~' [~bs), there must exist a semiclassical version of the classical 
method for obtaining (papB(t)) described near Eq. (2.2). The arguments 
which lead to an exact periodic orbit sum rule for the classical correlation 
functions also imply that the semiclassical calculation of correlation 
functions should take the form 

2 t -  1 

7 = 0  
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where the contribution from the 7th fixed point, (~bA[ /~t ]~b~),~, is found 
by evolving the entire initial B state by the dynamics linearized about the 
7th fixed point, ignoring all cuttings, and then overlapping with the A 
state. This is the key to including the nonlinear effects of chopping into 
wave packet dynamics and, indeed, is precisely what falls out of a formal 
derivation of the long-time semiclassical dynamics; see the dissertation of 
O'Connor/s/ 

For the sake of simplicity we will concentrate on the autocorrelation 
functions in the following. Localized wave packets of the form 

(qlqo, Po,~) = ~ e~ Po, a) 
j =  c~ 

[4rch2,~ 1/4 q0)) 
g(q; qo, P0, o-) = ~-~- - )  exp ( (q ~- q~ + ipo(qh- 

(2.7) 

have as contributions from the 7th tlxea point 

(q, p,a] Bt lq, p,a)7 - e i~' [- cosh t 2 -  1 
(cosh L~) 1/2 exp L 2 cosh t2 

{ 6q2' (SPZa2"~ " t21 (2.8) x \--~y-v ~ j  - z - ~  tanh 

where c~q = q -  q~ and 6/; = p -  p~ are the distances of the center of the 
wave packet from the 7th fixed point and r/s= (2'-1)pTq~/h. The result 
can be found by performing the appropriate Gaussian integrals and including 
the phases given in ref. 4. This specialization to the diagonal elements of the 
t-step propagator is done only for expository reasons. Indeed, the off- 
diagonal elements are crucial to the study of the manifestations of the 
nonlinear dynamics, both before and after t*, in the stationary states. 

2.3.1. Trace of the Propagator. Interest in the trace of the 
propagator, which we will denote as (/}t), stems from the pivotal role it 
plays in the semiclassical understanding of spectral features. Knowledge of 
the propagator's traces for all times t is equivalent to a complete specifica- 
tion of the spectrum, since the time-energy Fourier transform of (/~')  
is the exact density of states. By evaluating ( B ' )  with a semiclassical 
approximation to the dynamics, it is possible to associate features of the 
classical mechanics with their manifestations in the quantum spectrum. 

For the calculation of (/~') ,  we require a method of resolving the 
identity in terms of the wave packets. The similarity between the wave 

822/68/1-2-10 
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packets defined on the discrete lattice and the more familiar continuous 
Gaussian coherent states suggests that this can be accomplished as 

1 = ~ h  dp dq [q, p, a ) ( q ,  p, al (2.9) 

which is easily shown to be true. The trace at time t is then calculated by 
evaluating the autocorrelation function (q, p, al B' [q, p, a )  as a function 
of the center (q, p) of the wave packet, and integrating over the centers. 
Invoking the above nonlinear semiclassical dynamics [Eq. (2.6) with A = B 
and Eq. (2.8)] and interchanging the sum over fixed points with the 
integral over wave packets generates 

1 
( /~ ' )  2 sinh(2t/2) ~ exp(i~/7) (2.10) 

The form taken by the semiclassical evaluation of </~t) nicely conforms 
with the usual expectations of periodic orbit theories. (29) The prefactor 
[2 sinh(~t/2)] -1 is the appropriate weight for the various period-t fixed 
points, all of which are periodic without reflection and have the same 
stability properties. 

2.4. Semiclassical Versus Quantum Correlation Functions 

The quality of the semiclassical approximation may be illustrated by 
constructing a phase space map of the autocorrelation function magnitude, 
W(q, p; t ) =  ](q, p, ~l/~' Iq, P, cr)I, for the entire ensemble of wave packets. 
By contouring the map W(q, p; t) as a function of (q, p) for a succession 
of times t, one gains a more global view of the nature of the dynamics both 
before and after the log time. Saraceno (28) constructed the quantum version 
of this plot for 2~h = 128-1. He found a sharp transition at the log time, 
before which there was an obvious quantum-classical correspondence and 
no interference phenomena present, but after which the opposite became 
true. He also called attention to an unusually strong set of recurrences in 
the vicinity of the period-two fixed points which peak at roughly twice the 
log time. These recurrences are so strong that the involved wave packets 
must be nearly completely reconstructed at a time when only statistical 
mixing is expected classically. Reproducing semiclassically such odd quan- 
tum behavior represents a severe test of the method since it is going to 
require a strong collective effect from the various terms in the autocorrela- 
tion sum if it is to work. We therefore recreate his plot and add alongside 
the semiclassical version. The maps for the times up to the log time are 
given in Fig. 5. The quantum and semiclassical figures are strikingly 
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Fig. 5. Comparison of the quantum and semiclassical calculations of W(q, p; t) for times 
t = 1, 2,..., 6 (up to the log time). The p axis is vertical and the q horizontal. The five contours 
are equally spaced. The quantum version is shown immediately above the corresponding semi- 
classical figure. The local maxima are situated precisely on the classical fixed points. 

similar, both looking essentially as the classical version would. The dif- 
ferences seen along the perimeter edges are to be expected for the reasons 
explained above. The invariance under reflection across either diagonal is 
simply due to the symmetries. The time progression continues in Fig. 6, 
starting from just beyond the log time and stretching to 2t*. The 
comparison of the quantum and semiclassical continues beautifully--the 
semiclassical dynamics is capturing nearly all of the interference patterns, 
including the late, large recurrences near the period-two fixed points. There 
is no longer any semblance of the purely classical dynamics remaining. 

Surprisingly, in the baker 's  map the log time does not signal the 
breakdown of the semiclassical approximation.  Could it be that this is a 
special feature of the baker 's map? Two other systems, the Arnol'd cat map 
and tiling billiards on surfaces of constant negative curvature, are known 
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N N .  

Fig. 6. Comparison of the quantum and semiclassical calculations of W(q, p; t) for times 
t = 7, 8,..., 12 (past the log time). The p axis is vertical and the q horizontal. The quantum 
version is shown immediately above the corresponding semiclassical figure. The contours are 
set at the same levels for all of the frames. Additional contours arise for the large peaks. 

to  lead to exact semiclassical formulas. ~si However,  we have also seen 
excellent semiclassical dynamics  in the post-log-time regime in a con- 
t inuous dynamical  system (as opposed to a discontinuous quan tum map),  
the stadium billiard. (3) Billiards also have their peculiarities, but  it may  well 
turn out  generally that  the log time was far too pessimistic. If  so, there 
remain fundamental  questions of  why the log time is not  the b reakdown 
time and what  is the time scale on which semiclassical mechanics fails. 

2.5. The Linear Time Scale 

It  is impractical,  at least for the baker 's  map,  to investigate the 
b reakdown of semiclassical dynamics  directly. Our  direct at tempts were 
blocked by the semiclassical approximat ion  working as long in time as we 
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could practically calculate the summation over the classical orbits. The 
exponential proliferation of terms in the sum prevented us from continuing 
past t~4t* .  A more feasible alternative approach is possible because an 
exact quantum meaning can be given to each individual 7 contribution in 
the sums of Eqs. (2.6) and (2.10). Then an individual term may be studied 
quantum mechanically and semiclassically. 

The quantum meaning of a ? decomposition is seen by constructing 
the path integral of/}t  and organizing, in a natural way, groups of quan- 
tum paths corresponding to whether the paths sequentially find themselves 
on the left or right of the chopping line q -- 1/2. There is not enough space 
to give the derivation here; it may be found in ref. 5 and some discussion 
is available from ref. 30. It becomes clear in deriving semiclassical dynamics 
from the path integral that, as would be intuitively expected, the most 
serious errors arise in the chopping zones, i.e., q = 1/2 and near the bound- 
aries of the phase space square. An illustration of this feature can be con- 
structed by finding the relative error in the semiclassical approximation 
(/~')~. The collection of bad fixed-point contributions, i.e., those whose 
relative errors exceed 25%, show us where the semiclassical mechanics is 
breaking down. All the fixed points belonging to a particular periodic orbit 
have the same error, so it suffices to select just one fixed-point contribution 
per orbit. For a given orbit, selecting the fixed point which comes closest 
to the chopping zones gives Fig. 7 ( t =  14; 2 N =  128). There is a narrow 
zone around the line q =  1/2 where the semiclassical approximation is 
failing. The effective width of this zone and its scaling properties with h 
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Fig. 7. Pictoral representation of the contributions to the trace of the propagator treated 
poorly by the semiclassical expression. The square represents the classical phase space. There 
is one dot per inaccurate periodic orbit contribution. It is drawn on that orbits' fixed point 
lying closest either to the square's boundary or the q = 1/2 line. 
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determine the time scale of the validity of semiclassical dynamics. A fairly 
sharp definition of the breakdown time z, can be given by adopting a 
criterion such as the time when, say, 1/4 of the periodic orbits have visited 
the chopping zone. Assuming that each periodic orbit only enters the zone 
of area (width) e) once at most, there are o)t2' bad fixed-point contribu- 
tions out of a total of 2'. The time z, approximately inversely proportional 
to the scaling with h of the width. In further tests, numerical evidence 
suggests the width decreases linearly with h, which implies that zs "~ O(1/h). 
This scale, though far longer than a log time, is on the boundary of being 
too weak to assure that the eigenstates and eigenvalues can be individually 
derived semiclassically. 

3. D I S C U S S I O N  

Although the baker's map is a rather abstract system, we believe, 
following Balazs and Voros  (26) and Saraceno, (28) that it contains not only 
the "essence of chaos," but also some rather generic quantum behavior. 
The influence of periodic orbits in the dynamics and in the eigenstates (in 
the form of scars) is well demonstrated in more physical systems and 
present, too, in the baker's map. 

We have been able to go beyond earlier results on the baker's map, by 
showing that the semiclassical dynamics breaks down for most initial states 
on a time scale very long compared to the "log time" that had been 
expected. The reasons for this are not entirely clear, but at the same time 
it is clear that some of the old arguments for why semiclassical dynamics 
should not work past the log time were wrong. We list them below. 

Fallacy 1. "Quantum mechanics smooths over structures in classical 
phase space which are smaller than h." (This is true as far as it goes). 
"Therefore, such structures could not be used to construct a reasonable 
approximation to the quantum mechanics." This does not follow from the 
first, true statement, and is false! The time scale for such structures to 
appear globally is log(l/h); this was the log time argument. 

Fallacy 2. "Very close stationary phase points will give poor semi- 
classical results." This is definitely wrong as stated. The point here is that 
given the severe folding in chaotic dynamics, there are ways for stationary 
phase points (as viewed in some standard integral representation over posi- 
tion, or momentum, etc.) to become "close" while still not coalescing in the 
usual sense. As a fold in a formerly linear manifold first develops, suppose 
we mark off a loop that has area h. Further dynamics will exponentially 
stretch the loop and bring the arms exponentially closer together, making 
the stationary phase points appear to be extremely close. However, this 
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proximity is an illusion, while the meandering loop still will have the same 
area in it. (The baker's map does not have loops in this sense, but has 
something even worse, i.e., the chopping of the classical manifolds). 

Fallacy 3. "We can change the potential very slightly and drastically 
affect the long-time classical mechanics but not substantially affect the 
quantum mechanics." True, so far. "Therefore, the classical mechanics can- 
not possibly be used to construct an accurate semiclassical approximation." 
This is seen to be a variant of Fallacy 1. 

Fallacy 4. "The Van Vleck Green's function generally has exponen- 
tially many caustics in it as time increases, and thus becomes useless." The 
first part of the statement is true, but the singularities are not fatal if we 
integrate over them (as in the propagation of a Gaussian coherent state). 
(The baker's map is an exception to this "problem," in that no loops with 
their attendant caustic tangencies are formed). 

More work must be done to understand the breakdown of the semi- 
classical approximations, which this and our previous work have shown to 
be much more robust than previously thought. 

One compelling (and sobering) fact is that as the classical mechanics 
gets more complex, it becomes increasingly difficult to calculate. As this 
and our previous studies have shown, it is possible to go well beyond the 
log time in the classical calculations, but probably not typically a factor of 
ten times the log time. We are working on ways to exploit the fact that the 
quantum mechanics is insensitive to some classical detail, in order to 
simplify the classical mechanics. 

Applications to an increasingly wide array of physical problems are 
underway or contemplated. It is hoped that this will lead to new physical 
insight and permit calculations which were formerly too difficult. 
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